2020.06.18

Kodėl sausai statomi siurbliai negali siurbti skysčio iš daugiau nei 9 metrų gylio?

1,033 kg/cm² – būtent su tokia jėga atmosfera slegia bet kokio paviršiaus kvadratinį centimetrą, įskaitant ir mūsų kūno paviršių.



 

Skysčio stulpo slėgis (P) yra lygus gravitacijos pagreičio (g), skysčio tankio (ρ) ir skysčio stulpo aukščio sandaugai:

P  = g  ×  ρ  ×  h

Atmosferos slėgis jūros lygyje (P) turėtų būti laikomas lygiu 1 kg/cm2 (100 kPa)
Pastaba: iš tikrųjų slėgis yra 1.033 kg/cm²

Vandens tankis (ρ) esant 20°C temperatūrai yra 1000 kg/m3
Gravitacijos pagreitis (g) – 9,8 m/s²

Ši formulė rodo, kad kuo žemesnis atmosferos slėgis (P), tuo žemesnis skysčio pakilimas (t.y. kuo aukščiau jis yra virš jūros lygio, pavyzdžiui, kalnuose, tuo žemesnis siurblio įsiurbimo aukštis).
Iš šios formulės taip pat matyti, kad kuo mažesnis skysčio tankis, tuo iš giliau jį galima išsiurbti, ir atvirkščiai, esant didesniam tankiui, tuo įsiurbimo aukštis sumažės (iš kokio gylio galima siurbti).

Klausimas: kodėl atliekant skaičiavimus, gaunamas 10,3 m aukščio skysčio stulpas, o siurbliai gali įsiurbti tik iš 9 metrų gylio?
Atsakymas yra gana paprastas:
– pirma, skaičiavimas buvo atliktas idealiomis sąlygomis;
– antra, jokia teorija nepateikia absoliučiai tikslių verčių, nes formulės empirinės;
– ir trečia, visada yra nuostolių: įsiurbimo linijoje, siurblyje, jungtyse.

Dėl šių, aukščiau paminėtų priežasčių, įprastiniuose vandens siurbliuose neįmanoma sukurti tokio įsiurbimo vakuumo, kad vanduo pakiltų aukščiau.

Taigi, kokias išvadas galima padaryti iš viso to:
1. Siurblys neįsiurbia skysčio, o tik sukuria vakuumą jo įleidimo angoje (t.y. sumažina atmosferos slėgį įsiurbimo linijoje). Vanduo į siurblį patenka spaudžiamas atmosferos slėgio dėka.
2. Kuo didesnis skysčio tankis (pavyzdžiui, esant dideliam smėlio kiekiui), tuo mažesnis įsiurbimo aukštis.
3. Galite apskaičiuoti įsiurbimo aukštį (h), žinodami, kokį vakuumą sukuria siurblys ir skysčio tankį pagal formulę:

h = P / (ρ × g) – x 

kur P – atmosferos slėgis, ρ – skysčio tankis, g – gravitacijos pagreitis, x – hidrauliniai nuostoliai (išreikšta metrais, m).

Pastaba: formulę galima naudoti, apskaičiuojant įsiurbimo aukštį normaliomis sąlygomis ir iki + 30°C temperatūros. Taip pat reikia atsižvelgti į tai, kad įsiurbimo aukštis (bendru atveju) priklauso nuo skysčio klampumo, vamzdyno ilgio ir skersmens bei skysčio temperatūros.

Pavyzdžiui, kai skysčio temperatūra pakyla iki + 60 ° C, įsiurbimo aukštis sumažėja beveik dvigubai. Taip yra todėl, kad padidėja sočiųjų garų slėgis skystyje. Bet kuriame skystyje visada yra oro burbuliukų. Visi esate pastebėję, kaip verdant pirmiausia atsiranda maži burbuliukai, kurie vėliau padidėja ir prasideda virimas. T.y. užvirus, oro burbuliukų slėgis tampa didesnis nei atmosferos.
Prisotintų garų slėgis ir yra slėgis burbuliukuose. Padidėjęs sočiųjų garų slėgis sukelia skysčio virimą esant žemesniam slėgiui. O siurblys tiesiog sukuria žemą atmosferos slėgį įsiurbimo linijoje.
Todėl kai skystis išsiurbiamas, esant aukštai jo temperatūrai, jis užverda įsiurbimo vamzdyne. Jokie siurbliai negali įsiurbti verdančio skysčio.

 

Maksimalus leistinas įsiurbimo aukštis – didžiausias vertikalus atstumas nuo skysčio paviršiaus lygio iki siurblio įsiurbimo angos, nesukeliantis kavitacijos atsiradimo.

2020.06.17

Kaip pasirinkti tinkamą siurblį?

Gana dažnai užduodamas iš pirmo žvilgsnio paprastas klausimas: kaip pasirinkti tinkamą siurblį? Deja, nėra nei vieno, nei dviejų paprastų atsakymų į tokį klausimą. Kiekvienai konkrečiai situacijai, siurbiamai terpei būtina rasti optimalų siurblio parinkimo variantą. Labai svarbu išsiaiškinti ir aiškiai suformuluoti kokią užduotį, kokias funkcijas turėtų atlikti siurblys.

Norint atsakyti, kaip pasirinkti tinkamą siurblį, būtina išsamiai nurodyti kelis iš esmės svarbius dalykus, kurie lemia teisingą siurblio pasirinkimą:

• kas bus siurbiama (terpės pavadinimas ar formulė, skysčio savybės, temperatūra, sudėtis, abrazyvinių dalelių koncentracija ir kt.)?
• per kokį laiko vienetą (val., min) kokį terpės tūrį (m³ arba l) reikia pumpuoti, t.y. kiek laiko norima skirti siurbimo procesui (t.y. ar siurblys užduotį turi atlikti per minutes ar per valandas)?
• kiek toli terpė bus pumpuojama ir koks slėgis reikalingas slėginės linijos išleidimo galutiniame taške (galite perpumpuoti iš vienos talpyklos į kitą 1 metro atstumu arba kelių kilometrų ilgio vamzdynu)?
• koks įsiurbimo aukštis, t.y. vertikalus atstumas nuo siurbiamo skysčio paviršiaus iki siurblio įsiurbimo įvado ašies centro?

Be to, labai svarbu pasirinkti tinkamą skysčio siurblį pagal jo tipą. Pavyzdžiui, negalima naudoti drenažo siurblio fekalijoms ar mėšlui siurbti, o rankinio sodo šulinio siurblio – rūgštims ar šarmams.
Tinkamai parinkti siurbliai ne tik ilgą laiką tarnaus, bet ir bus užtikrinamos ženkliai mažesnės sąnaudos jų eksploatavimui ir priežiūrai, bus išvengta prastovų.

 

Šioje temoje apžvelgsime dažniausiai pasitaikančias klaidas renkantis siurblį.

 

Įsitikinimas, kad brangesni siurbliai veiks geriau nei pigesni. Tiesą sakant, kaina toli gražu ne visada garantuoja kokybę. Lygiai taip pat, patys pigiausi rinkoje esantys siurbliai tikrai nepasižymės ilgesniu eksploatavimo laiku, nei ilgaamžiškesnėmis medžiagomis, iš kurių jie pagaminti ar geresnėmis konstrukcinėmis-hidraulinėmis savybėmis, nei kad žinomų pasaulinio lygio gamintojų gaminiai.

 

Perkant siurblį ar sistemą, neklausiama apie garantinių paslaugų suteikimo galimybę ir atsarginių dalių prieinamumą. Tai, kad pardavėjas teikia garantinio ir pogarantinio aptarnavimo paslaugas, turi platų atsarginių dalių asortimentą, rodo ne tik įmonės rimtumą, bet ir tai, kad šie siurbliai po metų nebus pašalinti iš prekybos ir prireikus atlikti siurblio aptarnavimą ar jam sugedus, visada galėsite kreiptis į pardavėją, norint skubiai suremontuoti savo įrangą pardavėjo serviso dirbtuvėse.

Taip pat reikia nepamiršti, kad rinkoje  egzistuoja pardavėjų, kurie siūlo pigiausius siurblius ir bando juos parduoti mažiausiomis kainomis.
Kainos yra žemesnės, nes sumažinti išlaidas galima:

– gamykloje vietoj varinių apvijų į variklį įdedant aliuminines;
– sumažinus elektros variklio statoriaus impregnavimo laku sluoksnių skaičių, kuris lemia greitą statoriaus degimą eksploatacijos metu net ir esant nežymiai perkrovai;
– naudojant žemiausios liejimo klasės liejinius (su įtrūkimais);
– siurblyje įdedant pigiausius guolius, kurie nepasižymi ilgaamžiškumu ir greitai subyra;
– pardavėjai neimportuoja atsarginių dalių ar neturi atsarginių dalių sandėlio ir neturi garantinio/pogarantinio aptarnavimo skyriaus (serviso).

 

Siurblio pasirinkimas, neatsižvelgiant į hidraulinę siurbimo sistemos schemą. Labai dažnai, renkantis siurblį, neatsižvelgiama į vamzdžiuose, vožtuvuose, alkūnėse susidarančius hidraulinius nuostolius. Todėl būtina įvertinti vamzdžių skersmenį, ilgį, medžiagą, iš kurios jie pagaminti, taip pat sistemoje esančias jungtis, vožtuvus ir t.t..

 

Atsisakoma automatinės apsaugos. Dažnai taupoma, neįdiegiant automatinių apsaugos priemonių.  Tai dažnai lemia naujo siurblio pirkimą. Štai keli pavyzdžiai:

– panardinamas šulinio siurblys geriamajam vandeniui siurbti ir laistymui. Ne paslaptis, kad į daugelį šulinių vanduo patenka labai lėtai, o vidutinis 1,5 m³/h našumo siurblys gali išpumpuoti visą vandenį per 2-3 valandas. Jei nėra plūdės, kuri išjungtų siurblį, kai nukris vandens lygis šulinyje, mechaninis sandariklis ir (arba) variklis perkais ir siurblys suges. Kyla klausimas: „tačiau daugelyje siurblių yra šiluminė apsauga, kuri jį išjungs“. Teisingai, yra. Tačiau tai yra avarinė apsauga ir jos negalima įjungti 100 kartų be pasekmių siurbliui. Kiekvienas perkaitimas lemia destruktyvius statoriaus izoliacijos pokyčius, kurie, galų gale, sukelia apvijos trumpąjį jungimą.
– panardinamas fekalinis siurblys su smulkintuvu, kuris naudojamas be automatinio variklio apsaugos jungiklio. Jei po smulkintuvo peiliu atsiduria kietas daiktas, siurblys užstringa ir, jei nėra įrengto automatinio variklio apsaugos jungiklio, variklio apvijos perkaista ir perdega.

 

Fizikos dėsnių nepaisymas. Du populiariausi pavyzdžiai:

– perkamas paviršinis sausai statomas siurblys vandeniui siurbti iš daugiau nei 9 metrų gylio (vertikalus atstumas nuo vandens paviršiaus lygio iki siurblio įsiurbimo įvado) . Tai fiziškai neįmanoma (rekomenduojame perskaityti žinyno temą – „Kodėl paviršiniai siurbliai negali siurbti skysčio iš didesnio nei 9 metrų gylio?„).


– su sausai statomu išcentriniu siurbliu bandoma iš šulinių išsiurbti karštą vandenį, kurio temperatūra yra didesnė kaip + 80°C. Tai neįmanoma, nes karštas vanduo įsiurbimo vamzdyje tiesiog verda, kai siurblys sukuria vakuumą jame ir siurblio įsiurbimo savybės ženkliai skiriasi, nei siurbiant šaltą vandenį.

 

Chemijos nežinojimas (neatsižvelgimas į pumpuojamų skysčių cheminius ir fizinius parametrus). Vartotojai neretai ieško pigios alternatyvos brangiam cheminiam siurbliui:

– buitiniai siurbliai (nors modeliai ir pagaminti iš nerūdijančio plieno) nėra pritaikyti darbui su chemiškai agresyviomis terpėmis. Cheminiai siurbliai yra brangūs, nes naudojamos specialios (ir, svarbiausia, tinkamai parinktos konkrečiai agresyviai terpei) srauto dalies medžiagos, tarpikliai ir sandarikliai, kurie skirti dirbti su chemiškai aktyviais skysčiais;
– neatsižvelgiama į tai, kad koncentruoti rūgščių ir šarmų tirpalai turi didelį tankį, todėl reikia sumontuoti elektros variklį padidintos galios, kuri yra tiesiogiai proporcinga skysčio tankio vertei.

 

Abrazyvinių skysčių siurbimas, nenaudojant specialių sandariklių. Siurbiant skysčius, turinčius savo sudėtyje daug abrazyvinių dalelių, siurbliai su standartiniais sandarikliais sugenda dėl skysčio patekimo į elektros variklį. Taip atsitinka dėl mechaninio sandariklio sudėvėjimo. 95% atvejų įprasti standartiniai siurbliai turi sandariklį „keramika – grafitas“. Kai dirbate su abrazyvu, tokio tipo mechaninius sandariklius galima sugadinti per 1 darbo pamainą. Problemos sprendimas paprastas: sumontuotas atsparus dilimui sandariklis su trinties pora „silicio karbidas – silicio karbidas“.

 

Dvigubo mechaninio sandariklio nenaudojimas tuo atveju, kai jis būtinas. Žemiau pateikiami pavyzdžiai:

– cukraus sirupo (arba kito panašaus skysčio, kuris gali kristalizuotis) siurbimas. Naudojant siurblį su vienu sandarikliu, sustabdžius siurblį, reikia praplauti ne tik siurblio darbinę, kuri tiesiogiai kontaktuoja su siurbiama terpe, dalį, bet ir patį veleno sandariklį. Jei to nepadarius, tada po prastovos sandariklio žiedai prilips vienas prie kito ir sekantį kartą paleidus siurblį, sandariklis pažeidžiamas, jį būtina keisti. Įdiegus dvigubą sandariklį, šios problemos išvengiama, nes tarp sandariklių yra vanduo, kuris neleidžia siurbiamam skysčiui kristalizuotis.
– skysčių, kurių garai gali neigiamai paveikti žmogaus organizmą, siurbimas (sukelti sveikatos problemų). Amoniakinį vandenį galima siurbti su siurbliu turinčiu vieną mechaninį sandariklį, tačiau net ir nedideli nutekėjimai per sandariklį (o jie neišvengiamai visada yra) lems tai, kad amoniako garai pasklis patalpoje, kurioje sumontuotas siurblys.

 

Neatsižvelgiama į skysčio klampumo padidėjimą, mažėjant temperatūrai. Pavyzdžiui, atšalus orui patalpose ar lauke, alyvų klampumas pradeda ženkliai didėti. Ir jei siurblys, taip pat įsiurbimo ir slėgio vamzdynų skersmuo nėra tinkamai parinktas, tada sutirštėjęs skystis paprastai nebepumpuojamas. Todėl, jei jums reikia dirbti žemoje temperatūroje, siunčiant užklausą ar užsakant siurblį, būtinai turite nurodyti žemiausią galimą temperatūrą (nors kompetentingi specialistai būtinai Jūsų to paklaus). Dažnai šią problemą galima išspręsti, keičiant žarnas į didesnio skersmens. Bet jei slėgio žarna yra per ilga, o siurblio sukeliamo slėgio nepakanka, tada vienintelis būdas atkurti normalų veikimą yra pakeisti siurblį arba šildyti siurbiamą skystį.

 

Siurblio parinkimas, neatsižvelgiant į siurblio darbo trukmę ir periodiškumą. Yra daug siurblių, kurie negali nuolat veikti visą parą. Darbas tokiais režimais sukels priešlaikinį įrenginio gedimą.  Pavyzdžiui, bet kokie siurbliai su šepetėliniais elektros varikliais (šepetėlinis mazgas greitai perkaista). Arba nepageidautina, kad siurbliai su minkštu darbo ratu (sparnuote) dirbtų pastoviu režimu, nes sparnuotė greitai subyrės. Patartina šio tipo siurblius naudoti periodiniam darbui (pavyzdžiui, užpildyti/išsiurbti talpas su produktais ir pan.).

 

Netinkamas siurblio konstrukcijos (veikimo principo) pasirinkimas. Dažnai, bandant sutaupyti pinigų, perkami išcentriniai siurbliai, kurie nėra skirti siurbti produktus, kurių struktūra gali būti sunaikinta, darbo ratui veikiant didelėmis apsukomis. Pavyzdžiui, siurbiant grietinėlę su išcentriniu siurbliu, ji yra suplakama į sviestą, kuris paskui prilimpa prie darbo rato ir dėl to siurblys visiškai nustoja siurbti produktą. Natūralu, kad siurblio išleidimo angoje  nebus visiškai ta pati grietinėlė, kuri pateko į siurblio įvadą. Arba siurbiant gyvas mieles (arba gyvas bakterijas ir kt.), darbo ratas, besisukantis 2900 aps/min greičiu, gali jas nužudyti. Ir jos negalės normaliai daugintis pagal proceso technologiją, o tešla nesigaus ir pan. Taip pat siurbiant produktus, kurie putoja, tais pačiais paprastais išcentriniais maistiniais siurbliais. Tokiu atveju siurblio išleidimo angoje gaunama daug putų ir normalus siurbimo procesas nevyksta.

Renkantis siurblius, labai svarbu į tai atkreipti dėmesį ir naudoti skysčiams, kurie gali pakeisti struktūrą, kurių negalima plakti, mažų apsukų tiesioginio skysčio perstūmimo siurblius (kumštelinius, membraninius, sraigtinius ir kt.)

 

Siurblių pasirinkimas savarankiškai. Kaip matote, renkantis siurblius savarankiškai, turite atkreipti dėmesį į labai daug niuansų, žinoti siurblių veikimo principus, konstrukcinius ypatumus ir dar daug techninės informacijos. Pagrindinių pramoninių siurblių tipų pasirinkimo ir savybių suvestinė lentelė.

 

Remiantis tuo, kas išdėstyta aukščiau, galime rekomenduoti:

– rinkdamiesi savarankiškai siurblį, visada pasitarkite su mūsų įmonės specialistais ir atsakykite kuo išsamiau į klausimus, kurie Jums bus pateikiami;
– kitas būdas, padėsiantis Jums sutaupyti laiko ir lėšų ateityje – užpildykite, kaip galima išsamiau, žemiau pridedamas siurblio parinkimo užklausos formas ir atsiųskite jas mūsų specialistams.

Užklausos forma siurblio parinkimui

Užklausos forma gręžinio siurblio (komplekto) parinkimui

 

 

Tikimės, kad aukščiau pateikta informacija buvo naudinga ir tai padės Jums išsirinkti geriausiai Jūsų poreikius atitinkantį siurblį ar sistemą. Daugiau informacijos rasite kitose mūsų tinklalapio žinyno temose.

Kodėl sugenda panardinami drenažiniai, nuotekų siurbliai?

Remiantis statistika, panardinami drenažiniai ir nuotekų siurbliai 95% atvejų sugenda dėl netinkamo eksploatavimo ir tik nedaugeliu atvejų yra keletas kitų priežasčių (gamyklos defektas ar kai kurie nenumatyti veiksniai).

Pabandykime išsiaiškinti visas priežastis, dėl kurių dažniausiai sugenda siurbliai.

Bendrovė „VANDENS SIURBLIAI“ parduoda laiko patikrintus siurblių modelius,  kad kuo mažiau kiltų nepatogumų ar trikčių klientams eksploatuojant juos. O remontuoti siurblius savo sąskaita ir padengti su tuo susijusias išlaidas įmonei nepigus „malonumas”, jau nekalbant apie tai, kad kenčia įmonės įvaizdis ir pan. Turėdami ilgametę siurblių pardavimo patirtį, mes sukūrėme stabilų kokybės, laiko patikrintų panardinamų nuotekų, drenažinių siurblių modelių asortimentą. Siūlome pasaulyje pripažintų siurblių gamintojų produktus.

 

Instrukcijos. Dauguma klientų, kurie įsigyja siurblį ir „viską padaro pagal instrukcijas“, dažniausiai instrukcijos net neatsiverčia. Norint tai nustatyti, pakanka užduoti porą klausimų.
Nepatingėkite perskaityti siurblio įrengimo ir naudojimo vadovą. Tai užtrunka šiek tiek laiko, tačiau vadove pateikiama informacija suteikia supratimą, kas yra gerai, kas blogai siurbliui.

 

Variklio apsaugos automatinis jungiklis (elektros grandinės pertraukiklis). Dažniausiai montuojamas įprastas apsaugos automatas, kuris neužfiksuoja mažų srovės pokyčių. Jo galia pasirenkama 2,5 karto didesnė nei siurblio variklio galia (dėl didelės paleidimo srovės). Kol toks automatas „suveikia“, neretai siurblys perkaista ir sugenda. Todėl rekomenduojama įdiegti ne paprastą automatą  (kuris iš esmės apsaugo tik nuo trumpojo jungimo tinkle), bet automatinį variklio apsaugos įtaisą. Tai yra specialus įtaisas, leidžiantis tiksliai nustatyti variklio darbinę srovę ir kontroliuoti mažiausią jos padidėjimą, siurblio velenui užstrigus. Tuo pačiu metu variklio automatinis apsaugos pertraukiklis leidžia viršyti nustatytą variklio srovės vertę jo paleidimo (įjungimo) momentu.

Išvada:

– norint apsaugoti elektros variklį, būtina įdiegti elektros variklio apsaugos automatą, o ne paprastą elektros maitinimo tinklo pertraukiklį;
– turėtumėte perskaityti instrukcijas, kuriose neretai gamintojai pabrėžia tai.

 

Šiluminė siurblio variklio apsauga. Šiluminė apsauga yra įmontuojama siurblio apvijoje ir yra tam tikra relė, kuri, esant išoriniam temperatūros kilimui, nutraukia elektros variklio maitinimą. Reikėtų suprasti, kad kiekvieną kartą, kai apvija perkaista, jos izoliacija lydosi, tai yra, atsiranda negrįžtamų pokyčių. Po kurio laiko (su kitu perkaitimu) izoliacija būtinai tam tikroje vietoje visiškai ištirps ir įvyks apvijos trumpasis jungimas, dėl kurio elektros variklis suges. Tai yra, šiluminė apsauga nėra šimtaprocentinė apsauga nuo visų negandų, o tik avarinė apsauga, kuri gali kelis kartus apsaugoti elektros variklį ir nieko daugiau.

 

Siurblio darbas be vandens. Panardinamo siurblio elektros variklis aušinamas siurbiamu skysčiu. Yra dviejų tipų panardinami siurbliai: su aušinimo apvalkalu ir be jo. Siurbliai su aušinimo apvalkalu gali veikti būdami nevisiškai panardinti į skystį. Tokiu atveju vanduo tekės pro siurblį supantį aušinimo apvalkalą ir tuo pačiu vėsins variklį. Siurbliai be aušinimo apvalkalo visada turi būti visiškai panardinami į siurbiamą terpę.

Taigi sumontuojant siurblį, yra dvi pagrindinės klaidos, dėl kurių elektros variklis gali perkaisti ir sugesti:
– siurblio veikimas vandenyje (terpėje), kai temperatūra aukštesnė už nurodytą siurblio pase (dažniausiai įprastoje versijoje iki + 35 … 40°С, o karščiui atsparioje versijoje iki + 60°С). Tuo dažnai papiktnaudžiauja avarinės tarnybos, jei įvyksta avarijos karšto vandens sistemoje ir reikia išsiurbti vandenį, kurio temperatūra neretai viršija maksimaliai leistiną.
– iš dalies panardinto siurblio arba siurblio be vandens veikimas.

Ir pirmu, ir antru atveju elektros variklis perkaista ir sugenda. Įprastinis elektros grandinės pertraukiklis to neužfiksuos.

1 pav. Siurblio variklio, kuris nebuvo visiškai panardintas, perkaitimo pavyzdys

 

Problemos sprendimas:
– siurblio montavimas duobėje, talpoje, kuri talpinama rezervuare;
– automatinio vandens lygio valdymo naudojimas (pavyzdžiui, plūdinis jungiklis).

Dažna klaida: nedidelės talpos įdėjimas į didelio ploto rezervuarą. Tokiu atveju vandens lygis siurbimo metu labai lėtai krenta, o siurblys ilgą laiką veikia ne visiškai panardintas į skystį.

 

Ilgalaikis siurblio veikimas už srauto ir slėgio ribų, kitaip tariant, ne aukščiausio darbo efektyvumo taško ribose. Pažvelkime į konkretų pavyzdį – nuotekų siurblys su trijų fazių elektros varikliu. Siurblio kėlimo aukštis yra 25 metrai prie 40 m³/h našumo, išvado skersmuo: ø65mm. Siurblys įrengtas duobėje ir per 100 mm  skersmens žarną tiekia vandenį į 7 metrų aukštį. O toliau vanduo iš žarnos teka savitaka ant žemės. Tokio siurbimo atveju, didelė tikimybė, kad visos 3 fazės siurblio variklyje sudegs, nes perkais. Rekomenduojamas tokio siurblio slėgis (kėlimo aukštis), remiantis siurblio techninių specifikacijų duomenimis, yra 18–25 metrai. Tai yra tas diapazonas, kuriame elektros variklis veikia be perkrovos. Esant pakėlimo aukščiui 7 metrai, siurblys veikia tiekimo (našumo) diapazone, kuris žymiai viršija darbinį diapazoną (kuo mažesnis slėgis, tuo didesnis našumas (srautas) bet kuriame išcentriniame siurblyje). Tokiu atveju labai padidėja darbinė srovė siurblio apvijose, o tai lemia elektros variklio perkaitimą.
Dirbant už rekomenduojamo slėgio ribų, reikia įrengti vožtuvą prie siurblio išleidimo angos ir nustatyti tokį tiekimą, kad variklio apvijose darbinė srovė atitiktų nurodytą pase, taip pat reikia sumontuoti variklio automatinės apsaugos grandinės pertraukiklį. Priešingu atveju siurblys veiks esant perkrovai ir variklis gali sugesti.

Kaip matyti iš aukščiau pateikto pavyzdžio, nėra gerai pasirinkti siurblio su didele „slėgio atsarga“, nes tai gali sukelti jo gedimą (nors atrodo, kad siurblys kelia į 25 metrų aukštį, tad keliant į 7 metrus, neturėtų kilti problemų). Tačiau taip nėra. Tokiu atveju rekomenduotina naudoti siurblį, kurio kėlimo aukščio riba : 7÷10 metrų.

 

Siurblio veikimas esant uždarytai sklendei arba kai naudojamas per mažo skersmens vamzdis. Kartais nuotekas reikia nuvesti į kanalizaciją, kurioje yra tam tikras slėgis (taip vadinamoji slėginė kanalizacija). Tokiu atveju turite pasirinkti siurblį, kurio slėgis bus 0,5 bar (5 metrais) didesnis nei slėgis kanalizacijoje. Be to, nustatant slėgį kanalizacijos vamzdžio įleidimo angoje, reikia atsižvelgti į slėgio nuostolius linijoje nuo siurblio iki įėjimo į kanalizaciją taško. Jei slėgis kanalizacijos įleidimo angoje yra nepakankamas, tada skystis iš kanalizacijos vamzdžio atgal per siurblį tekės į septiką.

Norint išvengti skysčių perpildymo, tokiu atveju reikia sumontuoti atbulinį vožtuvą.
Jei siurblio slėgis pasirinktas neteisingai (mažesnis nei slėgio vamzdyje), tada, įjungus siurblį, jis nuolat veiks uždaroje linijoje, o tai sukels jo perkaitimą ir gedimą.

Neretai pirkėjai taupo ir perka mažesnio skersmens vamzdžius, nei reikalauja sistemos įrengimas. Tai lemia:
– sumažėja siurblio našumas (jis gali pradėti veikti už darbo intervalo ribų), dėl kurio jis gali perkaisti;
– vamzdis gali užsikimšti, dėl ko siurblys gali dirbti uždaroje linijoje, tai yra, dirbti su perkrova, perkaitinti elektros variklį ir jį sugadinti.

Jei tikrai norite sutaupyti dėl vamzdžių skersmens, galite naudoti nuotekų siurblį su smulkintuvu.
Tokiu atveju vamzdis nebus užkimštas didelėmis dalelėmis (tačiau vamzdžio skersmuo vis tiek iš anksto turi būti apskaičiuotas, kad siurblys neveiktų esant perkrovai).

Vamzdžio skersmuo priklauso nuo jo ilgio ir siurblio našumo.
Žemiau yra lentelė, pagal kurią tai galima nustatyti:

Taip pat skaičiuodami reikalingą skysčio pakėlimo aukštį, turite įvertinti susidarančius hidraulinius nuostolius alkūnėse, vožtuvuose ir t.t…

Siurblio veikimas pumpuojant didelio tankio ir klampumo skysčius. Kai dirbate su skysčiais, kurie neatitinka siurblio techniniame pase nurodytų duomenų, elektros variklis pradeda veikti perkrovos sąlygomis, o tai lemia jo perkaitimą. Tada viskas vyksta pagal aukščiau aprašytą scenarijų. Gamintojai neretai siurblio techninėje dokumentacijoje nurodo maksimalų terpės tankį.

 

Darbas su labai abrazyviniais skysčiais, su didele kietų dalelių koncentracija skystyje. Siurbiant skysčius su dideliu kiekiu abrazyvo, veleno sandariklis greitai susidėvi, o tai lemia skysčio patekimą į elektros variklio korpuso vidų ir tai sukelia gedimą. Dažnai skaitydami instrukcijose, kad siurblys gali siurbti skysčius, kurių dalelės yra ne didesnės kaip 35 … 50 mm (daugumai buitinių nuotekų siurblių), vartotojai galvoja, kad tokios dalelės gali būti akmenys, vinys, armatūra, cemento gabalai ir kt., ir dideliais kiekiais. Tiesą sakant, tai ne visai taip. Jei tokios dalelės nuolat pateks į siurblį, tai sugadins darbo ratą ir sandariklį. Tokie siurbliai gali praleisti dideles daleles, bet dažniausiai minkštos struktūros.
Gana dažnai statybinės įmonės, kasdamos duobes, taupo lėšas pramoninės įrangos pirkimui ir perka buitinius siurblius vandeniui siurbti. Dažniausiai pasibaigia taip pat: siurbliai užkimšti smėliu ir akmenimis, su sulaužytomis darbo ratų mentėmis ir pažeistais korpusais. Norint siurbti vandenį iš statybinių duobių, reikalingi specialūs pramoniniai drenažo ar sunkiųjų nuotekų klasės siurbliai, skirti dirbti ypatingai sunkiomis sąlygomis. Jie pagaminti iš specialaus dilimui atsparaus plieno ir turi padidintos galios elektros variklius.

2 pav. Siurblio užstrigimo dėl abrazyvinių dalelių patekimo, viršijant leistiną dydį, pavyzdys

 

Dažnas siurblio variklio įjungimas/išjungimas. Įjungus bet kurį elektros variklį, paleidimo srovė kelis kartus būna didesnė nei darbinė. Todėl yra ribotas siurblio paleidimų skaičius per valandą (kuo galingesnis elektros variklis, tuo mažesnį paleidimų skaičių per valandą jis leidžia). Šis paleidimų skaičius buitinio lygio siurblių varikliams dažniausiai būna apie 20 per valandą. Maksimaliai galimą paleidimų skaičių gamintojai nurodo konkretaus siurblio techninėse specifikacijose.

Dažna klaida montuojant siurblį yra ta, kad vartotojai sutrumpina plūdinio jungiklio laido ilgį, kad jis įsijungtų „dažniau“. Kartais jis įsijungia taip dažnai, kad viršija leistinas ribas, o tai lemia apvijų perkaitimą ir siurblio gedimą. Kita klaida, kai siurblys yra sumontuotas siaurame šulinyje ir per ilgą vamzdį pumpuoja vandenį į šlaitą. Neįdiegus atbulinio vožtuvo prie siurblio išleidimo angos, siurblys išsiurbia vandenį ir išsijungia (jei jame yra plūdė). Po to vanduo iš šio vamzdžio dėl nuolydžio nutekės atgal į šulinį ir užpildys jį, o tai lems pakartotinį siurblio įsijungimą. Ir jei šis procesas kartosis dažnai, siurblio variklis sudegs. Šis gedimas nesunkiai nustatomas tikrinant siurblį – vienos fazės 220V siurbliams sudega paleidimo apvija.

 

Siurblio veikimas esant žemai įtampai, įtampos šuoliai. Kai siurblys dirba su per žema įtampa (skiriasi nuo nustatytos daugiau nei 5%), variklio apvijose darbinė srovė žymiai padidėja, o tai lemia jo perkaitimą.

Ši situacija gali atsirasti dėl dviejų priežasčių:
– problemos elektros energijos tiekimo tinkle;
– ilgo maitinimo laido naudojimas, neteisingai parinkus jo skerspjūvį, atsižvelgiant į elektros variklio galią ir pačio laido ilgį.
Jei naudosite ilgą laidą su mažu skerspjūvio plotu, tada dėl padidėjusios varžos, įtampa, kuri faktiškai pasiekia siurblio variklį, gali žymiai skirtis nuo elektros tinklo įtampos.
– elektros variklis gali sugesti dėl įtampos šuolių elektros tinkle.

 

Siurblio iškėlimas ar nuleidimas laikant už elektros maitinimo ar plūdės kabelio. Tai yra vienas iš labiausiai paplitusių būdų sugadinti siurblį. Traukiant laidą, pažeidžiamas kabelio įėjimo jungties į variklio korpusą sandarumas. Tai lemia vandens patekimą į variklį ir jo gedimą. Taip pat atsitinka, kad pats laidas nėra sandarus (pavyzdžiui, nešiojant siurblį, jis buvo numestas ant maitinimo laido). Išoriškai tai niekaip nepasireiškia, tačiau laikui bėgant vanduo per kabelį patenka į elektros variklį ir jį sugadina.

3 pav. Maitinimo laido pažeidimo ir apvijos perdegimo pavyzdys, kai vanduo patenka į variklį

 

Darbas agresyvioje aplinkoje. Daugelis žmonių mano, kad jei siurblys pagamintas iš nerūdijančio plieno, tada jį galima įmerkti į bet kokį skystį ir siurbti bet kokią cheminę terpę. Paprastai šis įsitikinimas baigiasi po kelių minučių siurblio veikimo. Žinoma, yra gaminami specialūs panardinami cheminiai siurbliai, kurie skirti siurbti agresyvias chemines terpes. Tokio tipo siurblys yra specialaus išpildymo, jame dalys gaminamos iš medžiagų, kurios turi atlaikyti sąlytį su agresyvia terpe. Įprasti siurbliai nėra skirti šiam tikslui.

 

Apibendrinus visus aukščiau išvardintus dalykus, galima pažymėti:

• Prieš įsigyjant siurblį ar projektuojant, visada geriau pasikonsultuoti su specialistais ir gauti atsakymus į visus užduodamus klausimus;
• Įsigijus, montuojant siurblį, visada verta perskaityti įrengimo ir naudojimo instrukciją. Montavimo ir prijungimo prie elektros tinklo darbus gali atlikti tik kvalifikuotas ir susipažinęs su saugos instrukcijomis personalas;
• Visada sumontuokite elektros variklio automatinės apsaugos jungiklį;
• Jei montavimo vietoje pasireiškia įtampos šuoliai, įrenkite įtampos stabilizatorių;
• Siurblys turi būti naudojamas tik pagal paskirtį;
• Kur reikalinga užtikrinti sistemos padidintą veikimo patikimumą, visada verta montuoti siurblius su valdymo ir apsaugos pultais ar skydais. Automatika kontroliuoja įvairias kritines situacijas ir užtikrina apsaugą nuo visų galimų gedimų.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2020.06.15

Kaip sumontuoti ir naudoti savisiurbį išcentrinį siurblį?

Kai jums reikia išgauti vandenį iš negilaus gręžinio, šulinio ar vandens kaupimo rezervuaro, o panardinamas siurblys šiam tikslui netinka, savisiurbis sausai statomas siurblys  bus geriausias jūsų pasirinkimas. Taigi, ką jūs turite žinoti pasirinkdami, montuodami tokią siurbimo sistemą? Priešingai nei panardinamuose siurbliuose, sausai montuojamuose siurbliuose nėra vandens slėgio, kuris padėtų pašalinti orą iš įsiurbimo sistemos ir siurblio vidaus. Todėl, jei sistemoje yra oro, kuris yra suspaudžiamos dujos, siurblys neveiks.

Dėl šios priežasties įsiurbimo vamzdžiai ir sausai montuojami siurbliai, kurie skirti pakelti vandenį iš lygio, esančio žemiau jų įsiurbimo angos, privalo būti pilnai užpildyti vandeniu prieš paleidžiant. Nepaisant to, eksploatacijos metu oras gali patekti į siurblio vidų, sukurdamas triukšmą ir kavitaciją – tiek nepageidaujamą žalingą poveikį, tiek sukeliantį priešlaikinį gedimą. Nors yra keletas savaiminio užpildymo tipų, dažniausiai naudojamas kai įsiurbimo sistemoje įrengiamas atbulinis vožtuvas. Priklausomai nuo paskirties, pats siurblys gali būti vienos pakopos arba daugiapakopis, tačiau užpildymo sistema išliks ta pati nepriklausomai nuo pakopų skaičiaus.

 

Esminiai dalykai, kuriuos reikia atsiminti, montuojant savisiurbį siurblį:

• Siurblį įrenkite kuo arčiau siurbimo šaltinio;
• Jei įsiurbimo vamzdis ilgesnis nei 10 m, naudokite vidinį vamzdžio skersmenį, didesnį nei siurblio įsiurbimo jungties. Pavyzdžiui, jei siurblio įvadas 1″, naudokite įsiurbimo vamzdį G 1 1/4 (DN 32);
• Įsiurbimo vamzdis turi būti visiškai sandarus ir nukreiptas į viršų, kad būtų išvengta oro tarpų susidarymo;
• Jei siurblys yra aukščiau vandens lygio, sumontuokite įsiurbimo vamzdžio apačioje atbulinį vožtuvą su filtru, kuris visada turi būti panardintas (arba atbulinį vožtuvą ant siurblio įsiurbimo jungties);
• Jei naudojate lanksčias žarnas, naudokite sustiprintą spiralinę įsiurbimo žarną, kad žarna nesusispaustų dėl siurbimo vakuumo;
• Norėdami išsiurbti iš akumuliacinės talpos, sumontuokite atbulinį vožtuvą;
• Jei (geodezinis) pakėlimas išėjimo angoje yra didesnis nei 15 m, tarp siurblio ir uždarymo vožtuvo sumontuokite atbulinį vožtuvą, kad apsaugotumėte siurblį nuo galimų vandens hidraulinių smūgių ir išvengtumėte pašalinių dalelių patekimo į siurblį.

 

Savisiurbio siurblio nepertraukiamam veikimui užtikrinti būtinos sąlygos:

• Įsiurbimo vamzdis ir visos jungtys turi būti visiškai hermetiškos, t.y. nelaidžios vandeniui ir panardintos visą laiką į siurbiamą vandenį;
• Įrenkite išmetimo vamzdžio vertikalią atkarpos dalį virš siurblio išleidimo angos;
• Prieš paleidžiant siurblį, vamzdis iki atbulinio vožtuvo ir siurblio korpusas turi būti visiškai užpildyti švariu vandeniu.

 

Savisiurbio siurblio sumontavimo schema

 

Sistemos komponentai:

A1, A2: Siurblio užpildymo vandeniu angos;
A3:        Vandens išleidimo iš siurblio anga;
Hs:        Įsiurbimo aukštis (vertikalus atstumas nuo vandens paviršiaus iki siurblio įsiurbimo ašies vidurio, metrais). Hs (maksimalus siurblio įsiurbimo aukštis) reikšmes gamintojai dažniausiai nurodo siurblio techninėse specifikacijose arba ant siurblio esančiose duomenų lentelėse;
1:           Vamzdžio atrama;
2:           Lanksti jungtis;
3-5:       Atbulinis vožtuvas;
4:           Ventilis (sklendė).

2020.06.10

Sistemos NPSH apskaičiavimas

N.P.S.H. (Net Positive Suction Head) – sąlyginis hidraulinis slėgis (kavitacijos rezervas). NPSH nurodo minimalų įsiurbimo linijoje slėgį, kuris užtikrina atitinkamo tipo siurblio veikimą be kavitacijos. Jis matuojamas skysčio stulpo metrais siurblio įsiurbime – įvade. Sąlygiškai, tai yra jėgų santykio balanso patikrinimas siurblio įsiurbime. Fizinė šio parametro reikšmė yra tokia: ar skystis garuos ir užvirs prie esamo slėgio siurblio įsiurbimo angoje (kavitacijos efektas), ar siurblys veiks normaliai be kavitacijos ir įsiurbiamo skysčio srauto pertrūkio.

NPSHr – reikalinga slėgio vertė siurblio įsiurbimo angoje (pateikia siurblio gamintojas kiekvienam atskiram siurbliui jo darbo kreivėse);
NPSHa –  esama siurblio įsiurbimo angoje priešslėgio vertė (apskaičiuojama savarankiškai);

 

NPSHa (sistemos) visada turėtų būti didesnis nei NPSHr (siurblio). Jei taip nėra, siurblys kavituos. Tokiu atveju būtina pasirinkti kitą siurblį su mažesniu NPSHr arba padidinti slėgį įsiurbimo angoje arba sumažinti temperatūrą, tuo sukeliant prisotintų garų slėgio sumažėjimą.

 

NPSHa (sistemos) > NPSHr (siurblio)

• NPSHa apskaičiavimas. Žemiau pateikiama NPSHa skaičiavimo skaičiuoklės priklausomai nuo siurblio sumontavimo.
• NPSHr reikšmė. Reikšmė nurodoma gamintojo pateikiamoje siurblio darbo kreivėje.

 

 

ATVIRA SISTEMA – NEIGIAMO ĮSIURBIMO AUKŠČIO REŽIMAS

NPSHa = Pa – ( Vp + Ls + Hf )

• Atvira sistema (siurblys sumontuotas virš pumpuojamo skysčio lygio, skystis – atviroje talpoje);
• Pa – atmosferos slėgis, metrais, Pa ≈ 10,33 m;
• Vр – sočiųjų skysčio garų slėgis, esant maksimaliai skysčio darbinei temperatūrai, barais arba metrais (1 bar ≈ 10 vandens stulpo metrų);
• Ls – maksimalus įsiurbimo aukštis metrais;
• Hf – trinties nuostoliai įsiurbimo vamzdyje esant reikalingam siurblio našumui, metrais.

 

 

UŽDARA SISTEMA – NEIGIAMO ĮSIURBIMO AUKŠČIO REŽIMAS

 

NPSHa = Pa + P1 – ( Vp + Ls + Hf )

• Uždara sistema (siurblys sumontuotas virš pumpuojamo skysčio lygio, skystis – uždaroje slėginėje talpoje);
• Pa – atmosferos slėgis, metrais, Pa ≈ 10,33 m;
• Vр – sočiųjų skysčio garų slėgis, esant maksimaliai skysčio darbinei temperatūrai, barais arba metrais (1 bar ≈ 10 vandens stulpo metrų);
• P1 – skysčio paviršiaus slėgis uždaroje talpykloje (manometrinis slėgis), metrais;
• Ls – maksimalus įsiurbimo aukštis metrais;
• Hf – trinties nuostoliai įsiurbimo vamzdyje esant reikalingam siurblio našumui, metrais.

 

 

ATVIRA SISTEMA – TEIGIAMO ĮSIURBIMO AUKŠČIO REŽIMAS

NPSHa = Pa + Lh – ( Vp + Hf )

• Atvira sistema (siurblys sumontuotas žemiau pumpuojamo skysčio lygio, skystis – atviroje talpoje);
• Pa – atmosferos slėgis, metrais, Pa ≈ 10,33 m;
• Vр – sočiųjų skysčio garų slėgis, esant maksimaliai skysčio darbinei temperatūrai, barais arba metrais (1 bar ≈ 10 vandens stulpo metrų);
• Lh – maksimalus skysčio paviršiaus aukštis virš siurblio įsiurbimo ašies, metrais;
• Hf – trinties nuostoliai įsiurbimo vamzdyje esant reikalingam siurblio našumui, metrais.

 

 

UŽDARA SISTEMA – TEIGIAMO ĮSIURBIMO AUKŠČIO REŽIMAS

NPSHa = Pa + P1 + Lh – ( Vp + Hf )

• Uždara sistema (siurblys sumontuotas žemiau pumpuojamo skysčio lygio, skystis – uždaroje slėginėje talpoje);
• Pa – atmosferos slėgis, metrais, Pa ≈ 10,33 m;
• Vр – sočiųjų skysčio garų slėgis, esant maksimaliai skysčio darbinei temperatūrai, barais arba metrais (1 bar ≈ 10 vandens stulpo metrų);
• P1 – skysčio paviršiaus slėgis uždaroje talpykloje (manometrinis slėgis), metrais;
• Ls – maksimalus įsiurbimo aukštis metrais;
• Hf – trinties nuostoliai įsiurbimo vamzdyje esant reikalingam siurblio našumui, metrais.

2020.06.09

Gręžinio vandens tiekimo sistemos įrengimas

Norint eksploatuoti požeminį vandenį, reikia įrengti vandens tiekimo sistemą, susidedančią iš gręžinio, siurblinės, gręžinio galvutės, vandens kėlimo įrangos (siurblio, vandens kėlimo vamzdžių, elektros kabelio ir kitų sudedamųjų), vandentiekio tinklų, vandens slėgio palaikymo, valdymo ir apsaugos įrangos.
Kai gręžinys įrengiamas vienam namui, siurblinę įrengti nėra būtina. Tokiu atveju siurblys gręžinyje montuojamas specialaus adapterio pagalba, o gręžinio žiotys (viršus) uždengiamos įvairiais dangčiais (aliumininiais, plastikiniais, guminiais ir pan.).

 

VANDENS GRĘŽINIO PRIJUNGIMO BŪDAI

Vandens gręžinio prijungimas gali būti atliekamas dviem pagrindiniais būdais:

• gręžinį prijungiant adapterio pagalba;
• įrengiant siurblinę.

Pasirinkimas iš šių dviejų variantų lemia tiek kainą, tiek įrangos sumontavimo vietą. Pasirenkant adaptorinę sistemą, visa įranga bus montuojama namuose katilinėje ar kitoje patalpoje, o pasirinkus siurblinę, visa įranga bus montuojama siurblinėje, t. y. lauke esančioje po žeme arba ant žemės sumontuotoje konstrukcijoje.

 

Gręžinio adapteris – tai žalvarinė arba bronzinė detalė, specialiai sukurta vandens gręžinio prijungimui, nestatant brangių požeminių ar antžeminių statinių siurblinių.

                  

Adapteris montuojamas 1.6–1.8 metro gylyje, tiesiai į gręžinio vamzdį (arba į praplatinimą). Jo speciali dviejų dalių konstrukcija leidžia hermetiškai įvesti vandens pakėlimo vamzdį į gręžinį. Vidinė dalis, esanti vamzdžio viduje, užtikrina galimybę ištraukti siurblį aptarnavimui be kasimo darbų su specialiu įrankiu, kurį nesudėtingai galite pasigaminti patys.

Kai vandens gręžinio prijungimas vykdomas naudojant adapterį, visa įranga, kuri reikalinga gręžinio prijungimui (slėginis išsiplėtimo indas, dažnio keitiklis ar valdymo pultas, kolektoriai ir t. t.), montuojama namų katilinėje arba kitoje patalpoje. Tai – modernus ir patogus būdas gręžiniui prijungti.

Privalumai:

• Pigus sprendimas;
• Patikima konstrukcija;
• Hermetiškumas.

Trūkumas:

• Reikia papildomos vietos katilinėje ar kitoje patalpoje išsiplėtimo indo ir armatūros sumontavimui.

Giluminio gręžinio siurblio su slėgio rele, naudojant adapterį, montavimo schema.

 

Vandens gręžinio siurblinė – tai inžinerinis statinys, kuris skirtas vandens kėlimo įrangai ir kolektoriams patalpinti ir aptarnauti.

Jeigu vandens gręžinio prijungimas vykdomas daugiau kaip vienam namui, patariama statyti požeminę arba antžeminę siurblinę. Joje gali būti patalpina visa įranga (slėginis išsiplėtimo indas, dažnio keitiklis ar valdymo pultas, kolektoriai ir t.t.). Namuose tuomet montuojama tik įvado sklendė, o tai sutaupo vietos namų patalpoje. Siurblinės būna: požeminės gelžbetoninės, požeminės plastikinės ir antžeminės. Pasirenkant siurblinę, reikia atsižvelgti į vietovę ir gamtines sąlygas, estetinius poreikius ir eksploatavimo patogumą. Jeigu aukšti gruntiniai vandenys, patariama montuoti plastikinę arba antžeminę siurblinę.

Privalumai:

• Sutaupoma vieta namuose, katilinėje nereikia montuoti įrangos;
• Gali aptarnauti iki dešimties namų;
• Gali būti montuojama tiek ant gręžinio, tiek toliau nuo gręžinio;
• Galima pasirinkti siurblinės tipą pagal estetinius poreikius arba gamtines sąlygas.

Trūkumai:

• Ženkliai brangesnis sprendimas nei naudojant prijungimui adapterį;

 

KOKĮ GILUMINĮ GRĘŽINIO SIURBLĮ PASIRINKTI?

Vienas svarbiausių vandens gręžinio prijungimo momentų – giluminio gręžinio siurblio, kuris tieks vandenį vamzdžiais iki pat vartotojo čiaupų, parinkimas. Renkantis giluminį gręžinio siurblį, yra daug faktorių, kurie lemia, kuris variantas bus optimalus konkrečiai vandens tiekimo sistemai. Todėl norint teisingai parinkti gręžinio giluminį siurblį, būtina pradžioje žinoti gręžinio parametrus, atstumą nuo gręžinio iki įvado, aukščių skirtumus. Daugiau informacijos apie tai, kaip pasirinkti siurblį rasite paspaudę ant šios nuorodos.
Ne visada didesnės galios (daugiau kW ir kubinių metrų per valandą) siurblys yra geriau. Pasirinkus per galingą siurblį, tiesiog gausite tą patį vandens kiekį brangiau ir permokėsite už sistemos eksploataciją, taip pat didelė „sausos eigos” atsiradimo tikimybė.  Koks siurblys yra geriausias? Jeigu norite aukščiausio lygio produktų, rinkitės siurblių komplektus su dažnio keitikliais arba pavyzdžiui Grundfos SQE serijos siurblius su integruotu dažnio keitikliu ir moderniu valdikliu.

 

DIDESNĖS TALPOS SLĖGINIS IŠSIPLĖTIMO INDAS SU SLĖGIO RELE AR DAŽNIO KEITIKLIS?

Išsirinkus siurblį, kitas svarbus vandens gręžinio prijungimo momentas – pasirinkti tarp dažnio keitiklio ir slėginio išsiplėtimo indo su slėgio rėle.

Slėginis indas su slėgio rėle – siurblio valdymo sistema su slėginiu indu ir rėle yra viena paprasčiausių ir dažniausiai įrengiamų sistemų. Ji labiausiai tinka, kai vandens gręžinys pajungiamas pavieniams namams arba kelių namų bendrijoms. Daugiau informacijos apie slėginius išsiplėtimo indus rasite paspaudę ant šios nuorodos.

Ypatybės:

• Pigus įrengimas;
• Paprastas valdymas ir eksploatacija;
• Lengvai keičiami įrenginiai;
• Taisyklingai sureguliuotos sistemos vandens slėgio šokinėjimas minimalus, bet vis tiek bus jaučiamas;
• Montuojant su galingesniais siurbliais (esant didesniam našumui), slėginis išsiplėtimo indas bus labai didelis;
• Sistemas su slėginiu indu ir slėgio rėle galima patobulinti, sumontuojant papildomą minkšto paleidimo modulį, kuris leis gerokai sumažinti hidraulinius smūgius sistemoje.

Dažnio keitiklis

Siurblio valdymo sistema su dažnio keitikliu yra sąlyginai naujas produktas. Daugiau informacijos apie dažnio keitiklius, jų ypatybes ir privalumus rasite paspaudę ant šios nuorodos.

Renkantis dažnio keitiklį, svarbiausia jį tinkamai suprogramuoti. Priklausomai nuo dažnio keitiklio, jo programavimas gali būti labai sudėtingas arba paprastas. Pakanka įvesti kelis parametrus ir keitiklis kitus nustatymus parenka pats (Archimede, Grundfos SQE serija ir „Grundfos CUE“ serija).

Ypatybės:

• Tolygus (be pulsavimų) vandens slėgis;
• Kompaktiškas, vietą taupantis sprendimas, nes nereikalingas didelės talpos slėginis išsiplėtimo indas;
• Taisyklingai suprogramavus – taupoma elektros energija, mažėja elektros energijos kaštai;
• Sudėtingas arba paprastas programavimas/valdymas (priklausomai nuo modelio);
• „Minkštas” elektros variklio paleidimas ir stabdymas;
• Brangesnis sprendimas negu slėginis indas su slėgio rėle;
• Hidraulinių smūgių vandens tiekimo sistemoje sumažinimas.

 

VAMZDŽIŲ IR ELEKTROS KABELIO KLOJIMAS

Klojant vamzdžius nuo gręžinio iki namo, svarbu laikytis šių taisyklių:

• Jungiant vandens gręžinį, vamzdžiai turi būti užkasti 1,7 metro gylyje;
• Vamzdis, įvedamas į namą, turi būti apsauginiame kevale;
• Turi būti paklotas kabelis iki gręžinio (kabelis turi būti 4 gyslų, skerspjūvio plotas priklauso nuo siurblio galios, atstumo, bet dažniausiai pakanka 4×1.5mm, 4×2.5 mm). Toliau esančioje nuorodoje pateikiamos kabelių parinkimo lentelės panardinamiems gręžinių siurbliams;
• Taip pat turi būti iš anksto nuspręsta dėl vamzdžio laistymui įrengimo.

 

PAPILDOMI KOMPONENTAI REIKALINGI VANDENS GRĘŽINIO PRIJUNGIMUI

Nerūdijančio plieno lynas gaminamas dažniausiai iš AISI 316 nerūdijančio plieno markės.  Jo paskirtis – neleisti siurbliui nukristi, jeigu sulūžtų siurblį laikanti mova. Svarbi ir būtina sąlyga: siurblys kabo ant vamzdžio, o ne ant lyno (troselio). Lynas taip pat naudojamas iškelti siurblį aptarnavimui. Negalima naudoti cinkuoto ar plieninio, taip pat plieninio, kuris padengtas plastiku, nes po kurio laiko visos šios medžiagos po vandeniu suyra.

Nerūdijančio plieno lyno (troselio) „suspaudėjas“. Gaminamas dažniausiai iš AISI 316 nerūdijančio plieno markės.  Suspaudėjo paskirtis – užtvirtinti lyną, kad šis neišsinertų iš kilpos. Kaip taisyklė, patikimam suspaudimui reikalingi 4 vienetai lyno suspaudėjų.  Lygiai taip pat negalima naudoti cinkuoto ar plieninio, nes jie supūva. Vietoje jų galima naudoti specialias rišimo technikas.

Atbulinis vožtuvas – tai detalė, kuri neleidžia vandeniui grįžti atgal į gręžinį ir apsauganti siurblį nuo galimų hidraulinių smūgių. Papildomą atbulinį vožtuvą rekomenduojama sumontuoti iškarto virš siurblio – taip prailginamas sistemos tarnavimo laikas. Atbulinis vožtuvas yra suprojektuotas taip, kad vanduo galėtų tekėti tik viena kryptimi. Atbulinio vožtuvo veikimo principas yra gana paprastas. Vandens srautas, patenkantis į tokį įrenginį tam tikru slėgiu, veikia uždaromąjį elementą ir slegia spyruoklę, kurios įtakojamas šis elementas laikomas uždarytas. Suspaudus spyruoklę ir atidarius uždarymo elementą, vanduo pradeda laisvai judėti per atbulinį vožtuvą reikiama kryptimi. Jei darbinio skysčio srauto slėgio lygis vamzdyne nukrinta arba vanduo pradeda judėti neteisinga kryptimi, t.y. priešinga, vožtuvo spyruoklinis mechanizmas grąžina uždarymo elementą į uždarą padėtį. Tokiu būdu atbulinis vožtuvas apsaugo nuo nepageidaujamo atbulinio srauto susidarymo vamzdynų sistemoje.

   

 

Vandentiekio vamzdis, priklausomai nuo konkrečių vandens sistemos sąlygų (atstumas, gylis ir t.t…), gali būti įvairaus skersmens. Vienas iš kriterijų renkantis vamzdį – slėgio kategorija. Gręžinio siurbliui kabinti rekomenduojama naudoti mažiausiai 32 mm skersmens ir didžiausios slėgio kategorijos PN16 vamzdžius. Aukšta slėgio kategorija padės išvengti problemų su ilgalaikiu siurblio pakabinimu ant šio vamzdžio (rekomendacija galioja 1–3 vartotojų sistemoms).

 

Veržiamos detalės (jungtys, antgaliai, nipeliai) vamzdžiui į sistemą prijungti būna žalvarinės, bronzinės arba plastikinės. Kurias naudoti? Tai priklauso nuo naudojimo vietos. Šiandien jau yra labai kokybiškų plastiko produktų, kurie gali pakeisti, pavyzdžiui, žalvarines detales. Tačiau ten, kur galimi tempimai ir laužimai, bronzinės detalės pranašesnės. Kitais atvejais plastikas geriau tuo, kad jis mažiau reaguoja į aplinką ir ne taip paveikiamas korozijos.

 

Penkiašakis – detalė, skirta valdymo mazgui įrengti. Į jį yra įsukamas manometras, slėgio relė arba slėgio daviklis, jungtys.

 

Slėgio relė – reguliavimo įtaisas vandens slėgio sistemoje. Tai pats paprasčiausias ir lengviausiai reguliuojamas valdiklis vandentiekio sistemai. Veikimo principas.

 

Manometras – įrenginys, rodantis faktinį vandens slėgį sistemoje.

 

 

Daugiau Jus dominančios informacijos apie gręžinių siurblius ir įrangą rasite mūsų tinklalapio žinyno temose. Siurblių, įrangos kainas rasite atitinkamose prekių „NAMAMS” kategorijose.

Paprastesnis būdas – tiesiogiai kreiptis į mus. Tik tinkamai parinktas siurblys ir visi jo optimaliam darbui būtini komponentai užtikrins efektyvų visos vandens tiekimo sistemos veikimą. Todėl rekomenduojame siurblius ar komplektus pasirinkti su mūsų įmonės specialistų konsultacija ir patarimais.

 

Video:

 

 

 

2020.06.04

Franklin Electric gamintojo atsakymas į klausimą dėl panardinamo variklio izoliacijos varžos

Vienas iš dažniausiai užduodamų klausimų yra: „kokią išvadą apie panardinamo gręžinio elektros variklio būklę galima padaryti matuojant jo izoliacijos varžą?”

Žemiau esančioje lentelėje rasite atitinkamas izoliacijos varžos vertes. Atsižvelkite į tai, kad izoliacijos varžos reikšmės priklauso nuo aplinkos temperatūros.

Global Water Solutions (GWS) gamintojo atsakymai į klausimus dėl išsiplėtimo indų (hidroforų) naudojimo

 

 

– Ar GWS slėginiame išsiplėtimo inde galima naudoti glikolį (antifrizą)?

Gamintojas rekomenduoja nenaudoti daugiau kaip 50/50 propilenglikolio mišinio. Etilenglikolis neturi būti naudojamas. Jokiu būdu mišinyje negali būti naftos produktų sudėtinių dalių.

 

– Ar GWS slėginiuose išsiplėtimo induose galima naudoti naftos pagrindu pagamintus produktus?

Ne. Membranoje esanti medžiaga nėra atspari ir pritaikyta naudojimui su skysčiais, kurie pagaminti naftos produktų pagrindu.

 

– Ar galima sumontuoti „GWS“ indą „ant šono”?

Didesnių kaip 100 litrų talpos indų nerekomenduojama montuoti „ant šono”, nes tai gali pažeisti diafragmą ir nepataisomai sugadinti indą.

 

– Indas ką tik sumontuotas, o vanduo turi savitą, nemalonų skonį – ką turėtumėte daryti?

Praplaukite naują indą, perleisdami vandenį per tris ar keturis siurblio darbo ciklus. Jei nemalonus skonis išlieka, turėtumėte ištirti tiekiamo vandens kokybę.

 

– Ar galima naudoti chloruotą vandenį GWS induose?

Taip. GWS indai yra sukurti ir pagaminti įvertinus tai, kad chloras dažnai naudojamas vandens periodiniam apdorojimui. Kokia yra didžiausia diafragmų tolerancija chlorui?
Srauto apdorojimui rekomenduojama nuo 5 iki 50 ppm, o sistemos dezinfekavimui – ne daugiau kaip 250 ppm.

 

– Ką reiškia ciklas?

Ciklas nurodo siurblio veikimo laiką. Ciklas prasideda, kai siurblys įsijungia ir baigiasi, kai siurblys sustoja. Siurblio paleidimas ir sustojimas nustatomas pagal sistemos slėgio parametrus. Pavyzdys. Indo darbo funkcija vandens sistemai su 2,07/3,45 barų slėgio nustatymu. Tai reiškia, kad siurblys pradės veikti („įjungtas“), kai slėgis rezervuaro viduje sumažės iki 2,07 bar ir sustos („išjungtas“), kai slėgis pasieks 3,45 bar. Bendrieji slėgio nustatymai yra: 1,38/2,76, 2,07/3,45 ir 2,76/4,14 bar.

 

– Kaip slėgio relė valdo siurblį ir slėginį išsiplėtimo indą?

Slėgio relė kontaktuoja su išsiplėtimo indu ir siurbliu. Slėgio relė kontroliuoja slėgį indo viduje ir įjungia bei išjungia siurblį, kai indo viduje pasiekiamas įjungimo ir išjungimo slėgis.

 

– Koks vandens kiekis išteka iš išsiplėtimo indo į vandens sistemą?

Tai reiškia vandens kiekį, kuris išteka iš indo į sistemą prieš slėgio relei įjungiant siurblį. Ištekančiam vandens kiekiui įtakos turi siurblys, indo talpa ir nustatyti slėgio parametrai, kurie valdo jūsų vandens sistemą.

 

– Ką reiškia priešslėgis (iš anksto įpūstas oras išsiplėtimo inde)?

Priešslėgis reiškia oro (dujų) kiekį (oras naudojamas GWS induose) barais/psi, kuris įpučiamas į indą prieš jį montuojant – paprastai gamykloje. Priešslėgis yra „spyruoklė“, padedanti sukurti vandens slėgį kai siurblys išjungtas. Kai diafragma užpildoma vandeniu, ji suspaudžia priešslėgį. 2,07/3,45 sistemoje siurblys toliau pumpuos vandenį į indą, kol slėgis inde pasieks 3,45 bar.

 

– Koks oro slėgis (priešslėgis) turėtų būti inde?

Oro slėgis membraninėje talpoje turi būti 0,14÷0,2 bar mažesnis nei siurblio įjungimo slėgis. Matuojant ir koreguojant pradinį slėgį membraninėje talpoje vamzdynuose neturi būti vandens. Pavyzdys. Siurblio įjungimas 2,0 bar, išjungimas 3,2 bar. Oro slėgis talpoje turi būti – 1,8÷1,86 bar. Oro slėgis matuojamas atskiru manometru.

 

– Koks standartinis (gamyklinis) priešslėgis GWS induose? 

 

Koks yra maksimalus GWS išsiplėtimo indų darbinis slėgis?

 

Kokia yra maksimali GWS išsiplėtimo indų darbinė temperatūra?

 

Daugiau informacijos rasite kartu su konkrečiu gaminio modeliu pateikiamoje gamintojo montavimo ir naudojimo instrukcijoje.

 

 

2020.05.28

Pagrindiniai terminai susiję su siurbliais ir jų darbo kreivėmis

SU SIURBLIAIS IR SIURBIMU DAŽNIAUSIAI SUSIJĘ TERMINAI

 

• HEAD – Pakėlimas (pakėlimo aukštis): skysčių mechanikos terminas, reiškiantis skystyje sukauptą energiją dėl slėgio, kuriuo jis yra veikiamas. Matuojamas kaip skysčio ilgis, kur 10 metrų etaloninė vertė lygi vienai atmosferai arba 1 barui. Siurblių darbo kreivėse žymima H raide.

• FLOW – Našumas (srautas): siurblio skysčio tūrio matavimas. Dažnai nurodoma litrais per minutę (l/min), litrais per sekundę (l/s) ir kubiniais metrais per valandą (m3/val.). Siurblių darbo kreivėse žymima Q raide.

• PERFORMANCE CURVE – Eksploatacinių charakteristikų kreivė (darbo kreivė): diagrama, vaizduojanti bendrąją siurblio pakėlimo aukščio ir našumo kreivę konkrečiam siurbliui su atitinkamu darbo ratu ir atitinkamomis charakteristikomis. Informaciją apie tai, kaip skaityti siurblio darbo kreivę rasite paspaudę ant šios nuorodos.

• PIPE FRICTION LOSS – Vamzdžių trinties nuostoliai (hidrauliniai nuostoliai): pakėlimo nuostoliai, susidarantys dėl trinties tarp pumpuojamo darbinio skysčio ir vamzdžių, ir jungčių sienelių.

• FRICTION HEAD – Trinties dydis: jėga (slėgis), reikalinga trinčiai įveikti, kurią lemia sistemos vamzdžių, jungiamųjų detalių, siurblių vidus.

• TOTAL HEAD – Bendras pakėlimas (bendras pakėlimo aukštis): siurblio sukuriamo pakėlimo aukščio suma. Tai galima apskaičiuoti atimant įsiurbimo aukštį iš išmetimo aukščio. Dar kitaip vadinama, kaip „Bendras dinaminis pakėlimas“ (angl. Total Dynamic Head).

• PRESSURE – Slėgis: fizikinis dydis, jėgos veikimas į plotą. Kiekybiškai jis apibūdinamas kaip jėga, statmenai veikianti ploto vienetą. Matuojamas bar , kg/cm² arba kpa.

• PRESSURE DROP – Slėgio kritimas: slėgio skirtumas tarp dviejų siurblio sričių arba tarp talpos vidinės ir išorinės pusės.

• EFFICIENCY – Efektyvumas: išmatuota įrenginio vieneto galia, padalyta iš įrenginio vieneto pagamintos galios. Nurodoma procentais.

• B.E.P – Geriausias (aukščiausias) efektyvumo taškas: Kinetinė energija, kurią sukuria siurblys, niekada nekonvertuojama 100% efektyvumu į slėgio energiją. Nuostoliai visada patiriami dėl trinties sandarikliuose, guolių trinties, pumpuojamo skysčio trinties darbo rate ir kt. Aukščiausias efektyvumo taškas – yra siurblio tūrinis našumas, kuriam siurblys buvo suprojektuotas siekiant kaip galima daugiau paversti kinetinės energijos į slėgio energiją. Kas atsitinka, kai siurblys veikia ne aukščiausio efektyvumo darbo sąlygomis?

• N.P.S.H. (Net Positive Suction Head) – sąlyginis hidraulinis slėgis (kavitacijos rezervas). NPSH nurodo minimalų įsiurbimo linijoje slėgį, kuris užtikrina atitinkamo tipo siurblio veikimą be kavitacijos. Jis matuojamas skysčio stulpo metrais siurblio įsiurbime – įvade. Sąlygiškai,  tai yra jėgų santykio balanso patikrinimas siurblio įsiurbime. Fizinė šio parametro reikšmė yra tokia: ar skystis garuos ir užvirs prie esamo slėgio siurblio įsiurbimo angoje (kavitacijos efektas), ar siurblys veiks normaliai be kavitacijos ir įsiurbiamo skysčio srauto pertrūkio.

• N.P.S.H.A: Turimas grynasis įsiurbimo aukštis, kurį galima naudoti, norint išvengti kavitacijos siurblyje. Tai apibrėžiama kaip statinio pakėlimo aukščio ir paviršiaus slėgio aukščių suma, iš kurio atimamas siurbiamo skysčio garų slėgis, trinties nuostoliai dėl vamzdynų, vožtuvų ir jungiamųjų detalių. NPSHA vertė apskaičiuojama savarankiškai. NPSHa (sistemos) visada turėtų būti didesnis nei NPSHr (siurblys). Jei taip nėra, būtina pasirinkti kitą siurblį su mažesniu NPSHr, arba padidinti slėgį įsiurbimo angoje, arba sumažinti temperatūrą, tuo sukeliant prisotintų garų slėgio sumažėjimą. Skaičiuokles rasite paspaudę ant nuorodos.

• N.P.S.H.R: Grynas teigiamas įsiurbimo aukštis, reikalingas tam, kad siurblys „nekavituotų”. Reikalinga slėgio vertė siurblio įsiurbimo angoje (siurblio gamintojas NPSHR kreivę pateikia kartu su konkretaus siurblio darbo charakteristikų kreive);

• CAVITATE – Kavitacija: skysčio srauto žemose slėgio srityse susidarantys dujų, garų burbuliukai, kurie patekę į siurblio aukšto slėgio sritis, sprogsta sudarydami smūgines bangas. Prarandamas našumas, kyla triukšmas ir siurblio darbinių dalių sugadinimas. Daugiau apie kavitaciją rasite paspaudę ant šios nuorodos.

• SPECIFIC GRAVITY (SG) – Lyginamasis svoris: Medžiagos tankio santykis su etaloninio tirpalo (paprastai vandens, esant 4°C temperatūrai) tankiu.

• VISCOSITY – Klampumas: Atsparumas laipsniškai skysčio deformacijai veikiamai šlyties ar tempimo jėgų. Daugiau informacijos apie tai rasite paspaudę ant šios nuorodos.

• B.H.P. – Stabdymo galia A.G.: Variklio galios matavimas prieš jos praradimą sukeltą bet kokios apkrovos (greičių dėžės ir pan.). Matuojama, pritvirtinant „De Prony stabdį“ prie variklio veleno.

• FLOODED SUCTION – užpildytas siurbimas (teigiamas įsiurbimo aukštis): Jei siurblys yra žemiau skysčio šaltinio, o įsiurbimas vyksta sunkio jėgos dėka. Tai yra tinkamiausias išcentrinių siurblių sumontavimo būdas. Montavimo schemos pavyzdys.

• SUCTION STATIC HEAD – Statinis siurbimo aukštis: aukščių skirtumas tarp rezervuare esančio skysčio paviršiaus ir siurblio įsiurbimo angos vidurio linijos. Jei skystis rezervuare (talpoje) yra su slėgiu, šis slėgis taip pat įvertinamas.

• SUCTION STATIC LIFT – Statinis įsiurbimo pakėlimas (neigiamas įsiurbimo aukštis): Atsiranda tik tada, kai siurblys yra sumontuotas virš rezervuaro (talpos). Montavimo schemos pavyzdys.

• IMPELLER – Darbo ratas: siurblio dalis, kuri pritvirtinama prie besisukančio veleno ir paverčia judesio energiją į skysčio pumpavimą.

 

 

APIE SIURBLIO KREIVES

 

Išcentrinio siurblio veikimą parodo eksploatacinių charakteristikų rinkinys. Išcentrinio siurblio našumo kreivės parodytos 1 paveiksle. Pakėlimas, sunaudota energija, efektyvumas ir NPSH parodyti kaip srauto funkcija.

1 pav. Tipinio išcentrinio siurblio darbo kreivės. Pakėlimas, energijos suvartojimas (naudojama galia), efektyvumas ir NPSH yra parodyti kaip našumo funkcija.

 

Paprastai duomenų lapuose esančios siurblio kreivės apima tik dalį siurblio charakteristikų. Dėl šios priežasties energijos suvartojimas, P2 reikšmė, kuri nurodyta duomenų lapuose, apima tik siurbliui tiekiamą energiją (žr. 1 paveikslą). Tas pats pasakytina apie efektyvumo vertę, kuri apima tik dalį siurblio (η = ηP). Kai kurių tipų siurbliuose su įmontuotu varikliu, o ir su įmontuotu dažnio keitikliu, pavyzdžiui, siurbliuose su pastoviu varikliu, energijos kreivė ir η-kreivė apima ir variklį, ir siurblį. Šiuo atveju tai yra P1 vertė, į kurią reikia atsižvelgti.

Paprastai siurblio kreivės apskaičiuojamos pagal ISO 9906 A priedą, kuriame nurodomi kreivės nuokrypiai:

• Q +/- 9%;

• H +/- 7%;

• P + 9%;

• η-7%.

2 pav. Energijos suvartojimo ir efektyvumo kreivės paprastai apims tik siurblio hidraulinio mazgo dalį – t. y. P2 ir ηP.

 

 

Žemiau pateikiamas trumpas skirtingų siurblio eksploatacinių kreivių pristatymas.

 

Pakėlimas, QH kreivė

QH kreivė parodo, kokį pakėlimo aukštį siurblys gali užtikrinti esant tam tikram našumui (srautui). Pakėlimas matuojamas skysčio stulpo metrais [mLC], paprastai naudojamas matavimo vienetas [metras, m]. Siurblio pakėlimo matavimo vieneto [m] naudojimo pranašumas yra tas, kad QH kreivė neturi įtakos skysčio, kurį pumpuoja siurblys, tipui.

3 pav. QH kreivė tipiniam išcentriniam siurbliui. Mažas našumas lemia aukštą pakėlimą, o didelis  – žemą.

 

Efektyvumas, η-kreivė

Efektyvumas yra tiekiamos energijos ir faktiškai sunaudotos galios santykis.

4 pav. Tipinio išcentrinio siurblio efektyvumo kreivė

 

Siurblių pasaulyje ηP efektyvumas yra santykis tarp galios, kurią siurblys tiekia vandeniui (PH) ir galios tiekiamos velenui (P2):

 

 

 

Kur:

ρ yra skysčio tankis, kg/m³;
g yra gravitacijos pagreitis, m/s²;
Q yra debitas, išreikštas m³/h, o H – pakėlimas, m.

Vandeniui, kurio temperatūra 20°C ir kurio matavimo Q yra m³/h, o H – m, hidraulinę galią galima apskaičiuoti taip:

Kaip matyti iš efektyvumo kreivės, efektyvumas priklauso nuo siurblio veikimo taško. Dėl to svarbu pasirinkti siurblį, kuris atitiktų srauto reikalavimus, ir užtikrintų, kad siurblys veiktų efektyviausiame našumo (srauto) plote.

 

Energijos sąnaudos, P2 kreivė

Ryšys tarp siurblio sunaudotos energijos ir našumo (srauto) parodytas 5 pav. Daugumos išcentrinių siurblių P2 kreivė yra panaši į kreivę, pavaizduotą 5 pav., kur P2 vertė didėja didėjant našumui.

5 pav. Tipinio išcentrinio siurblio energijos suvartojimo kreivė

 

 

NPSH kreivė (grynasis teigiamas įsiurbimo aukštis)

Siurblio NPSH vertė yra mažiausias absoliutus slėgis, kuris turi būti siurblio įsiurbimo pusėje, kad būtų išvengta kavitacijos. NPSH vertės matuojamos [m] ir priklauso nuo našumo (srauto). Kai našumas padidėja, padidėja ir NPSH vertė (žr. 6 paveikslą).

6 pav. Tipinio išcentrinio siurblio NPSH kreivė

 

 

 

 

2020.05.25

Pramoninių išcentrinių siurblių montavimo schemos ir vaizdinė medžiaga

Pramoninių išcentrinių, sausai statomų siurblių montavimo pavyzdžiai

 

Žemiau pateikiamos rekomendacinio pobūdžio schemos, montuojant išcentrinius, sausai statomus siurblius, kai:

  • siurblys montuojamas virš pumpuojamo skysčio lygio;
  • siurblys montuojamas žemiau pumpuojamo skysčio lygio.

 

Pastaba. Įsiurbimo vamzdžio skersmuo turi būti didesnis už siurblio įsiurbimo angos matmenis (žr. lentelėje žemiau).

 

 

Išcentrinių siurblių sumontavimo video:

 

 

Kontaktų forma
×